66 research outputs found

    PyPedia:using the wiki paradigm as crowd sourcing environment for bioinformatics protocols

    Get PDF
    Background: Today researchers can choose from many bioinformatics protocols for all types of life sciences research, computational environments and coding languages. Although the majority of these are open source, few of them possess all virtues to maximize reuse and promote reproducible science. Wikipedia has proven a great tool to disseminate information and enhance collaboration between users with varying expertise and background to author qualitative content via crowdsourcing. However, it remains an open question whether the wiki paradigm can be applied to bioinformatics protocols. Results: We piloted PyPedia, a wiki where each article is both implementation and documentation of a bioinformatics computational protocol in the python language. Hyperlinks within the wiki can be used to compose complex workflows and induce reuse. A RESTful API enables code execution outside the wiki. Initial content of PyPedia contains articles for population statistics, bioinformatics format conversions and genotype imputation. Use of the easy to learn wiki syntax effectively lowers the barriers to bring expert programmers and less computer savvy researchers on the same page. Conclusions: PyPedia demonstrates how wiki can provide a collaborative development, sharing and even execution environment for biologists and bioinformaticians that complement existing resources, useful for local and multi-center research teams. Availability: PyPedia is available online at: http://www.pypedia.com. The source code and installation instructions are available at: https://github.com/kantale/PyPedia_server. The PyPedia python library is available at: https://github.com/kantale/pypedia. PyPedia is open-source, available under the BSD 2-Clause License

    Automated Mortality Prediction in Critically-ill Patients with Thrombosis using Machine Learning

    Get PDF
    Venous thromboembolism (VTE) is the third most common cardiovascular condition. Some high risk patients diagnosed with VTE need immediate treatment and monitoring in intensive care units (ICU) as the mortality rate is high. Most of the published predictive models for ICU mortality give information on in-hospital mortality using data recorded in the first day of ICU admission. The purpose of the current study is to predict in-hospital and after-discharge mortality in patients with VTE admitted to ICU using a machine learning (ML) framework. We studied 2,468 patients from the Medical Information Mart for Intensive Care (MIMIC-III) database, admitted to ICU with a diagnosis of VTE. We formed ML classification tasks for early and late mortality prediction. In total, 1,471 features were extracted for each patient, grouped in seven categories each representing a different type of medical assessment. We used an automated ML platform, JADBIO, as well as a class balancing combined with a Random Forest classifier, in order to evaluate the importance of class imbalance. Both methods showed significant ability in prediction of early mortality (AUC=0.92). Nevertheless, the task of predicting late mortality was less efficient (AUC=0.82). To the best of our knowledge, this is the first study in which ML is used to predict short-term and long-term mortality for ICU patients with VTE based on a multitude of clinical features collected over time

    Метафорична картина світу та її місце у системі світів

    Get PDF
    Статья посвящается исследованию понятия метафорической картины мира, целесообразность выделения которой автор объясняет тем, что по аналогии с языковой и концептуальной картинами мира, термин "метафорическая картина мира" содержит информацию о сложной структуре многосмысловых значений, которые в силу своей метафорической природе гармонически объединяются.У статті йдеться про поняття метафоричної картини світу, доцільність виділення якої авторка пояснює тим, що за аналогією до мовної й концептуальної картин світу, термін "метафорична картина світу" вміщує інформацію про складну структуру багатосмислових значень, що завдяки своїй метафоричній природі гармонійно поєднуються.The article deals with the notion of metaphorical world picture connected with the general principle of conceptualization. The term "metaphorical world picture" consists of a complex structure of various meanings harmonically combined due to their metaphorical nature

    Documentation of clinically relevant genomic biomarker allele frequencies in the next-generation FINDbase worldwide database

    Get PDF
    FINDbase (http://www.findbase.org) is a comprehensive data resource recording the prevalence of clinically relevant genomic variants in various populations worldwide, such as pathogenic variants underlying genetic disorders as well as pharmacogenomic biomarkers that can guide drug treatment. Here, we report significant new developments and technological advancements in the database architecture, leading to a completely revamped database structure, querying interface, accompanied with substantial extensions of data content and curation. In particular, the FINDbase upgrade further improves the user experience by introducing responsive features that support a wide variety of mobile and stationary devices, while enhancing computational runtime due to the use of a modern Javascript framework such as ReactJS. Data collection is significantly enriched, with the data records being divided in a Public and Private version, the latter being accessed on the basis of data contribution, according to the microattribution approach, while the front end was redesigned to support the new functionalities and querying tools. The abovementioned updates further enhance the impact of FINDbase, improve the overall user experience, facilitate further data sharing by microattribution, and strengthen the role of FINDbase as a key resource for personalized medicine applications and personalized public health

    Improved imputation quality of low-frequency and rare variants in European samples using the 'Genome of the Netherlands'

    Get PDF
    Although genome-wide association studies (GWAS) have identified many common variants associated with complex traits, low-frequency and rare variants have not been interrogated in a comprehensive manner. Imputation from dense reference panels, such as the 1000 Genomes Project (1000G), enables testing of ungenotyped variants for association. Here we present the results of imputation using a large, new population-specific panel: the Genome of The Netherlands (GoNL). We benchmarked the performance of the 1000G and GoNL reference sets by comparing imputation genotypes with 'true' genotypes typed on ImmunoChip in three European populations (Dutch, British, and Italian). GoNL showed significant improvement in the imputation quality for rare variants (MAF 0.05-0.5%) compared with 1000G. In Dutch samples, the mean observed Pearson correlation, r 2, increased from 0.61 to 0.71. W

    The Genome of the Netherlands: Design, and project goals

    Get PDF
    Within the Netherlands a national network of biobanks has been established (Biobanking and Biomolecular Research Infrastructure-Netherlands (BBMRI-NL)) as a national node of the European BBMRI. One of the aims of BBMRI-NL is to enrich biobanks with different types of molecular and phenotype data. Here, we describe the Genome of the Netherlands (GoNL), one of the projects within BBMRI-NL. GoNL is a whole-genome-sequencing project in a representative sample consisting of 250 trio-families from all provinces in the Netherlands, which aims to characterize DNA sequence variation in the Dutch population. The parent-offspring trios include adult individuals ranging in age from 19 to 87 years (mean=53 years; SD=16 years) from birth cohorts 1910-1994. Sequencing was done on blood-derived DNA from uncultured cells and accomplished coverage was 14-15x. The family-based design represents a unique resource to assess the frequency of regional variants, accurately reconstruct haplotypes by family-based phasing, characterize short indels and complex structural variants, and establish the rate of de novo mutational events. GoNL will also serve as a reference panel for imputation in the available genome-wide association studies in Dutch and other cohorts to refine association signals and uncover population-specific variants. GoNL will create a catalog of human genetic variation in this sample that is uniquely characterized with respect to micro-geographic location and a wide range of phenotypes. The resource will be made available to the research and medical community to guide the interpretation of sequencing projects. The present paper summarizes the global characteristics of the project

    The Genome of the Netherlands:design, and project goals

    Get PDF
    Within the Netherlands a national network of biobanks has been established (Biobanking and Biomolecular Research Infrastructure-Netherlands (BBMRI-NL)) as a national node of the European BBMRI. One of the aims of BBMRI-NL is to enrich biobanks with different types of molecular and phenotype data. Here, we describe the Genome of the Netherlands (GoNL), one of the projects within BBMRI-NL. GoNL is a whole-genome-sequencing project in a representative sample consisting of 250 trio-families from all provinces in the Netherlands, which aims to characterize DNA sequence variation in the Dutch population. The parent-offspring trios include adult individuals ranging in age from 19 to 87 years (mean = 53 years; SD = 16 years) from birth cohorts 1910-1994. Sequencing was done on blood-derived DNA from uncultured cells and accomplished coverage was 14-15x. The family-based design represents a unique resource to assess the frequency of regional variants, accurately reconstruct haplotypes by family-based phasing, characterize short indels and complex structural variants, and establish the rate of de novo mutational events. GoNL will also serve as a reference panel for imputation in the available genome-wide association studies in Dutch and other cohorts to refine association signals and uncover population-specific variants. GoNL will create a catalog of human genetic variation in this sample that is uniquely characterized with respect to micro-geographic location and a wide range of phenotypes. The resource will be made available to the research and medical community to guide the interpretation of sequencing projects. The present paper summarizes the global characteristics of the project.</p

    WGS-based telomere length analysis in Dutch family trios implicates stronger maternal inheritance and a role for RRM1 gene

    Get PDF
    Telomere length (TL) regulation is an important factor in ageing, reproduction and cancer development. Genetic, hereditary and environmental factors regulating TL are currently widely investigated, however, their relative contribution to TL variability is still understudied. We have used whole genome sequencing data of 250 family trios from the Genome of the Netherlands project to perform computational measurement of TL and a series of regression and genome-wide association analyses to reveal TL inheritance patterns and associated genetic factors. Our results confirm that TL is a largely heritable trait, primarily with mother’s, and, to a lesser extent, with father’s TL having the strongest influence on the offspring. In this cohort, mother’s, but not father’s age at conception was positively linked to offspring TL. Age-related TL attrition of 40 bp/year had relatively small influence on TL variability. Finally, we have identified TL-associated variations in ribonuclease reductase catalytic subunit M1 (RRM1 gene), which is known to regulate telomere maintenance in yeast. We also highlight the importance of multivariate approach and the limitations of existing tools for the analysis of TL as a polygenic heritable quantitative trait
    corecore